Перейти к содержанию

27.12.2011

Общие сведения об измерениях и измерительной аппаратуре

 Общие сведения об измерениях и измерительной аппаратуре.

Основные понятия и определения.

Количественная оценка свойств различных объектов измерения (исследования) осуществляется путем измерения физических величин, характеризующих указанные свойства.

Измерением называется познавательный процесс, заключающийся в сравнении опытным путем измеряемой величины с некоторым ее значением, принятым за единицу.

В более широком смысле

Измерение – это процесс приема и преобразования информации об измеряемой величине для получения количественного результата ее сравнения с единицей измерения в форме, наиболее удобной для исследования.

Таким образом, измерение представляет собой процесс получения информации: после измерения мы узнаем о численном значении измеряемой величины, ее связях и соотношениях с другими величинами больше, чем мы знали до измерения.

Значит, измерение это экспериментальное сравнение измеряемой величины с другой однородной величиной, принятой и узаконенной в качестве единицы. Так как измерение представляет собой физический эксперимент, оно не может быть осуществлено умозрительно, абстрактно. Из этого следует, что для любого измерения необходимы узаконенная система единиц и технические средства ее осуществления.

Результатом измерения всегда является числовое значение измеряемой величины А, которое равно отношению измеряемой величины Аиз к единице измерения Х. Иными словами, числовое значение показывает, во сколько раз измеряемая величина больше или меньше единицы измерения.

Процесс измерения, следовательно, может быть записан так:

А= Аиз/Х, откуда Аиз= А·Х, т. е. «измеряемая величина Аиз составляет столько-то А единиц Х».

Последнее уравнение называется основным уравнением измерения.

Система единиц. Основные единицы СИ.

Системой единиц называется совокупность основных и производных единиц измерения, охватывающих некоторую область измерений физических величин.

В СССР с 1 января 1963 года введен в действие ГОСТ 9867-61, которым рекомендуется применение СИ как предпочтительной во всех областях науки и технике, а также при преподавании.

Международная система единиц (СИ) построена на семи основных единицах двух дополнительных и 27 производных.

Основные единицы СИ.

Размер основных единиц устанавливается независимо от размеров других единиц.

Производные единицы – определяются уравнениями связи, выражающими математическую зависимость данной единицы от других единиц.

НаименованиеВеличины ЕдиницаИзмерения СокращенноеОбозначение
Русское Латинское
1. Длина Метр М M
2. Масса Килограмм Кг Kg
3. Время Секунда С S
4. Сила эл. тока Ампер А A
5. Термодинам.Температуры Кельвин К K
6. Сила света Кандела Кд Cd
7. КоличествоВещества Моль Моль Mol

Дополнительные единицы

1. Радиан – угол между двумя радиусами круга, вырезающими на его окружности дугу, длина которой равна радиусу (единицы линейного угла).

2. Стерадиан – телесный угол, величина которого расположена в центре сферы и который вырезает на поверхности сферы площадь, равную площади квадрата со стороной равной радиусу сферы (единицы телесного угла).

В измерительной практике очень часто пользуются кратными и дольными единицами. Они образуются путем умножения целых единиц на 10к, где К – целое число. При этом к наименованиям единиц прибавляют соответствующие приставки.

.

Средствами электрических измерений называют технические средства, используемые при электрических измерениях и имеющие нормированные метрологические свойства.

Различают следующие виды средств электрических измерений:

1. Меры.

2. Электрические измерительные приборы.

3. Измерительные преобразователи.

4. Электроизмерительные установки.

5. Измерительные информационные системы (ИИС).

Мерами называют средства измерений, предназначенные для воспроизведения физической величины заданного размера. (Вещественно воспроизведенная единица измерения).

Различают Однозначные, многозначные меры и набор мер.

Однозначная мера воспроизводит физическую величину одного размера.

Многозначная мера воспроизводит ряд одноименных величин различного размера (конденсатор переменной емкости, вариометр индуктивности и др.).

Набор мер представляет собой специально подобранный комплект мер, применяемых не только по отдельности, но и в различных сочетаниях с целью воспроизведения ряда одноименных величин различного размера (магазин сопротивлений).

Электроизмерительными приборами называют средства электрических измерений, предназначенные для выработки сигналов измерительной информации, т. е. сигналов функционально связанных с измеряемыми физическими величинами, В форме, доступной для непосредственного восприятия наблюдателем.

Меры электрических величин.

В практике электрических измерений в качестве мер широко используют Меры э. д.с., электрических сопротивлений, индуктивности, взаимоиндуктивности и емкости.

Мера Э. Д.С. Образцовой мерой э. д.с. служит нормальный элемент, представляющий собой гальванический элемент, характеризующийся весьма стабильным значением, развиваемой им э. д.с. Э. Д.С. н. э. отличаются от 1 В, но она точно известна. Это достигается подбором составных частей элемента из строго определенных по химическому составу веществ, точной их дозировкой и строго однообразной конструкцией. При температуре 20оС э. д.с. насыщенного н. э. составляет 1.0185 – 1.0187 В, т. е. наиболее допустимое расхождение значений э. д.с. превосходит 200 мкВ. Н. Э. изготавливают двух типов: Насыщенные и ненасыщенные, Отличающиеся друг от друга конструкцией, электролитом и стабильностью развиваемой э. д.с. Ненасыщенные – имеют меньшее внутренние сопротивление (~300 Ом) и малый температурный коэффициент. При температуре от 10 до 40оС – не превышает 15 мкВ на 1оС. У насыщенных – температурный коэффициент в 4 раза больше э. д.с.

Н. Э. мало меняется во времени. Согласно ГОСТ 1954 – 64, допускается изменение э. д.с. насыщенного н. э. за год не более 50 – 100 мкВ.

В зависимости от точности определения э. д.с., ее стабильности н. э. подразделяются на классы.

Н. Э. не может быть использован как источник электрической энергии, его нельзя нагружать током, превышающим допустимые значения.

Меры электрического сопротивления выполняют в виде образцовых измерительных катушек сопротивления или измерительных магазинов сопротивления. Значение сопротивлений их 10±n Ом, где n – целое число.

Образцовые катушки снабжают двумя парами зажимов, два из которых называются токовыми и предназначены для включения образцовой катушки в цепь тока, два других называются потенциальными. Сопротивление между потенциальными зажимами равно сопротивлению образцовой катушки к потенциальным зажимам присоединяются провода, идущие к измерительной схеме.

R0 К материалу, из которого изготавливаются катушки, предъявляются следующие требования:

T1 T2 1) возможно больше удельное сопротивление;

2) наименьшей температурный коэффициент и термо э. д.с. в паре с другими металлами;

П1 П2 3) устойчивость металла провода против окисления.

Этим требованиям лучше всего удовлетворяет манганин.

В зависимости от погрешности образцовых сопротивлений и других характеристик (изменение сопротивлений с течением времени, допустимой мощности и др.) образцовые сопротивления делятся на классы точности, для которых погрешности и другие характеристики нормируются соответствующими ГОСТ.

Меры индуктивности и взаимоиндуктивности.

Меры L и M выполняют в виде отельных катушек или магазинов. Образцовые катушки индуктивности и взаимной индуктивности обычно изготавливают в виде плоских катушек из изолированной тонкой проволоки, намотанной на каркас. Катушки должны обладать постоянство индуктивности, малым активным сопротивлением, независимостью индуктивности от величины тока и возможно малой зависимостью индуктивности от чистоты тока.

Для получения независимости L катушки от силы тока каркас катушки изготавливают из материала, М которого равна единицы и не зависит от магнитной индукции в нем (фарфор, мрамор, керамика, пластмассы, реже – дерево). Для обмоток выбирают многожильный провод (для уменьшения влияния частоты – уменьшают распределенную емкость).

Катушки взаимной индуктивности состоят из двух обмоток, жестко укрепленных на общем каркасе.

Мерами с переменными значениями L и М служат вариометры.

Меры емкости. Ими служат воздушные (не более 11000 пФ) или слюдяные конденсаторы постоянной и переменной емкости.

Образцовые меры емкости должны обладать постоянством емкости и малым ее температурным коэффициентом, весьма малыми потерями энергии в диэлектрике, независимостью емкости от частоты и формы кривой тока и высоким сопротивлением и прочностью изоляции.

Классификация мер и измерительных приборов.

Электрические измерительные приборы весьма разнообразны по принципу действия и конструктивному оформлению, вследствие различных требований, предъявляемых к ним.

Меры и измерительные приборы можно классифицировать по ряду признаков.

1. По функциональному признаку:

а) средства сбора, обработки и представления информации;

б) средства аттестации и проверки.

или а) рабочие меры и измерительные приборы;

б) образцовые меры и измерительные приборы;

в) эталоны.

Эталон – Это мера, воспроизводящая единицу измерения с наибольшей для данного исторического времени точностью.

2. По способу представления результатов измерения:

а) показывающие;

б) регистрирующие.

3. По методу измерения:

а) непосредственного отсчета;

б) сравнения.

4. По способу применения и по конструкции:

а) переносные;

б) стационарные.

5. По точности измерения:

а) измерительные;

б) индикаторы;

в) указатели.

6. По способу воспроизведения измеряемой величины:

а) аналоговые;

б) цифровые.

Аналоговые – электрические измерительные приборы, показания которых являются непрерывными функциями изменений измеряемой величины.

Цифровые – Электрические измерительные приборы, автоматически вырабатывающие дискретные сигналы изменения информации, показания которых представлены в цифровой форме.

Поделитесь своими мыслями, оставьте комментарий.

(required)
(required)

Внимание: HTML допускается. Ваш e-mail никогда не будет опубликован.

Подписка на комментарии

*